Abstract ■

Memristive Materials and Devices for Neuromorphic Computing

J. Joshua Yang

University of Southern California, Los Angeles, CA 90089, USA E-mail: iioshuav@usc.edu

Memristive devices¹ have become a promising candidate to enable efficient computing² for the big data and IoT era³. Such computing can be implemented on a Resistive Neural Network⁴ with memristive synapses⁵ and neurons⁶ or a Capacitive Neural Network^{7,8} with memcapacitive synapses and neurons. I will first briefly introduce the promises and challenges of memristive materials and devices for such applications and then discuss examples with different levels of bio-inspiration: first, deep learning accelerators⁹ with supervised online learning¹⁰; second, neuromorphic computing for pattern classification with unsupervised learning⁶; last, other computing applications, such as reinforcement learning¹¹ for decision making, artificial nociceptors for robotics¹², provable key destruction¹³ and true random number generators¹⁴ for cybersecurity.

- 1 Nature Nanotechnology 8, 13 (2013)
- 2 Nature materials **18**, 309 (2019)
- 3 Nature Reviews Materials 5, 173 (2020)
- 4 Nature Machine Intelligence 1, 434 (2019)
- 5 Nature Materials **16**, 101 (2017)
- 6 Nature Electronics **1**. 137 (2018)
- 7 Nature Communications 9, 3208 (2018)
- 8 Nature Machine Intelligence 1, 49 (2019)
- 9 Nature Electronics **1**, 52 (2018)
- 10 Nature communications 9, 2385 (2018)
- 11 Nature Electronics **2**, 115 (2019)
- 12 Nature communications 9, 417 (2018)
- 13 Nature Electronics **1**, 548 (2018)
- 14 Nature communications 8, 882 (2017)